Very general formation of tetrahydropterin cation radicals during reaction of iron porphyrins with tetrahydropterins: model for the corresponding NO-synthase reaction

Delphine Mathieu, Yves-Michel Frapart, Jean François Bartoli, Jean-Luc Boucher, Pierrette Battioni and Daniel Mansuy*

UMR 8601, Université Paris V, 45 rue des Saints-Pères, 75270 PARIS Cedex 06, France. E-mail: Daniel.Mansuy@univ-paris5.fr

Received (in Cambridge, UK) 8th October 2003, Accepted 6th November 2003 First published as an Advance Article on the web 2nd December 2003

Electron transfer from tetrahydropterins to iron porphyrins, with formation of intermediate tetrahydropterin cation radicals, is a very general reaction that was shown to occur not only with tetrahydrobiopterin, as originally found in NO-synthases, but also with another important biological cofactor, tetrahydrofolate, and various iron porphyrins, either in their ferric state, or in the Fe^{II}O₂ state, as in the first model of the **corresponding NO-synthase reaction described in this paper.**

Tetrahydropterins, such as tetrahydrobiopterin (H4B) or tetrahydrofolate (H4F) (Scheme 1), are important cofactors involved in many biological processes.1 In nitric oxide synthase (NO-synthase), H4B is an essential cofactor for the monooxygenation of Larginine to L-citrulline and NO.2 It has been recently shown that, during the NO-synthase-dependent monooxygenation, H4B transfers one electron to the heme, a second cofactor which is present in the active site in close proximity to H_4B . The H_4B^+ cation radical derived from this reaction has been detected by freeze–quench EPR methods.3 This is so far the only evidence for the intermediate formation of H_4B^+ in a biological process. Moreover, in a more general manner, no data are presently available on electron transfer between tetrahydropterins and iron porphyrins. We have recently studied the reactions between various natural and synthetic tetrahydropterins and many iron porphyrins (Scheme 1) in order to mimic the electron transfer observed in NO-synthase and to ascertain whether this reaction is general or restricted to NOsynthase because of a special proximity and positioning of H4B and the heme within the NO-synthase active site.

Addition of one equivalent of H4B to a solution of FeIII[*meso*tetra(pentafluorophenyl)- β -octabromo-porphyrin](Cl),⁴

Fe^{III}(TF₅PBr₈P)Cl (Scheme 1), in CH₃CN : H₂O (9 : 1), under anaerobic conditions, led to the immediate formation of $Fe^{II}(TF₅PBr₈P)$, as shown by visible and EPR spectroscopy. Fast mixing (about 1 s) of these two reactants in an EPR Bruker AquaX

 $\mathbf{d}\mathbf{i}\mathbf{M}\mathbf{e}\mathbf{H}_4\mathbf{P}$ \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{CH}_3 R_1 =CHOHCHOHCH₃ R_2 =H H_4B $R_1 = CH_2NH$ $\left(\sqrt{7}\right)$ - CONHCH(COOH)CH₂CH₂COOH $R_2=H$ H_4F

Fe^{III}(TF₅PBr₈P)CI $Ar=C_6F_5$; R_x=Br₈ Fe^{III} (TDCPN $_{x}$ P)CI Ar=2,6-diClPh; $R_x = (NO_2)_x$ **Scheme 1**

DOI: 10.1039/b312441j

DOI: 10.1039/b312441

 $\mathsf{Fe}^{\mathsf{II}}(\mathsf{T}_{\mathsf{piv}}\mathsf{PP})(\mathsf{O}_2)(\mathsf{NMelm})$

cell at 20 °C led to signals centered at $g = 2.003$ (Fig. 1) very similar to those previously reported for H_4B^+ obtained by chemical oxidation of H4B.5 Simulation of this spectrum on the basis of literature data^{3*c*,3*d*,5} gave a_{N5} , a_{H5} , a_{N8} and a_{H6} of 8.3, 9.7, 2.0 and 10.5 G respectively (for numbering of H4B atoms, see Scheme 1). These values are similar to those previously reported for chemically generated H_4B^{++} ⁵ and comparable to those found for H_4B^{++} detected in NO-synthase,3*c*,3*d* allowing for the different environments of H_4B^+ in the chemical and enzymatic experiments.

Reaction of $Fe^{III}(TF₅PBr₈P)Cl$ either with $H₄F$ in DMF : $H₂O$ 9 : 1, or with diMeH4P under conditions identical to those used with H₄B, also resulted in fast reduction of the Fe^{III} porphyrin with intermediate formation of a species exhibiting EPR characteristics very similar to those of H_4B^+ .

Similar reactions were performed between diMeH₄P and seven other Fe^{III} porphyrins, Fe(TDCPN_xP)Cl, bearing from 0 to 7 β -nitro substituents and exhibiting redox potentials (*vs*. saturated calomel electrode) ranging from -225 to $+560$ mV for the FeIII/FeII couple (in CH₂Cl₂).⁶ All reactions were done at 20 °C in CH₃CN : H₂O (9) : 1) under strictly anaerobic conditions, and were followed by UV– vis, 1H NMR and EPR spectroscopy. Complete reduction of the starting Fe^{III} porphyrin occurred in less than 10 s after addition of one equiv. of diMeH₄P to Fe^{III}(TDCPN_xP)Cl with $x > 2$. In fact, addition of increasing amounts of diMeH₄P to Fe(TDCPN₅P)Cl showed that complete formation of Fe^{II}(TDCPN₅P) already occurred after addition of 0.5 equiv. of diMe H_4P , as expected if one considers that diMeH4P is a two-electron reducing agent. Complete reduction of Fe(TDCPP)Cl, Fe(TDCPN₁P)Cl and Fe(TDCPN₂P)Cl required the addition of 5–10 equiv. of diMeH4P. EPR studies of all these reactions after fast mixing of the reactants in an EPR AquaX cell at room temperature always showed the intermediate formation of signals at $g = 2.003$ which are characteristic of diMeH₄P⁺⁺. Moreover, EPR studies of those reactions performed in the presence of various classical radical traps, such as α -(4-pyridyl-1-oxide)-*N*-*tert*-butyl nitrone (POBN), always showed the appearance of the signals expected7 for the addition of a carbon-centered free radical derived from diMe H_4P^+ to the spin trap. For instance,

Fig. 1 EPR spectrum observed during reaction of H4B with Fe(TF₅PBr₈P)Cl. $\left(\frac{1}{2}\right)$ experimental spectrum obtained 10 s after fast mixing of 2 mM Fe(TF₅PBr₈P)Cl and 2 mM H₄B in CH₃CN : H₂O (9 : 1) at 20 °C;(---) simulated spectrum with $g = 2.003$ and $a_N = 8.3$ and 2.0 and a_{H} = 9.7 and 10.5 G.

reaction of $Fe(TF_5PBr_8P)Cl$ with diMeH₄P in the presence of POBN (1 : 1 : 100 molar ratio) produced a six-line spectrum centered at $g = 2$, with $a_N = 14.5$ G and $a_{H}^{\beta} = 1.9$ G, corresponding to the trapping by POBN of a tertiary carboncentered radical derived from diMeH4P+·. A similar EPR spectrum has been recently observed during oxidation of H4B by peroxynitrite in the presence of POBN.8

The above data showed that electron transfer from tetrahydropterins to iron (III) porphyrins, with intermediate formation of the corresponding tetrahydropterin cation radical, is a very general reaction [eqn. (1)].

$$
diMeH_4P + (P)Fe^{III} \rightarrow (P)Fe^{II} + diMeH_4P^+ \tag{1}
$$

However, this electron transfer was not detected in the case of FeIII porphyrins of very low redox potentials, such as FeIII microperoxidase 11^9 (~ -375 mV *vs*. SCE) (data not shown), and does not occur between H₄B and the Fe^{III} heme (~ -500 mV *vs*. SCE) in NO-synthase.2 Indeed, the intermediate formation of H_4B^+ in the NO-synthase reaction has been shown to result from an electron transfer from H_4B to the NO-synthase heme $Fe^{II}O_2$ complex.3 In order to mimic that reaction, we have studied the reaction between diMeH4P and one of the few stable (porphyrin)Fe^{II}O₂ complexes reported in the literature, the Fe^{II}($T_{\text{piv}}P$ - $P(O₂)(N-MeIm)$ complex (Scheme 1) obtained by exposure of the Fe^{II}("picket-fence" porphyrin) to O_2 in the presence of Nmethylimidazole.¹⁰

Fast mixing of solutions of $Fe^{II}(T_{piv}PP)(O_2)(NMelm)$ and diMeH₄P (2 equiv.) in acetone : H₂O 9 : 1 at 20 °C in an EPR AquaX cell led to the formation of a species having EPR characteristics identical to those of $diMeH_4P^+$. The intensity of the $diMeH_4P^+$ signal reached its maximum value in 10 s and then decreased with a half life of about 120 s. UV–vis studies of the same reaction at 20 °C showed the disappearance of the bands of the starting complex and the appearance of the bands of the $Fe^{III}(T_{piv}PP)(OH)$ complex. EPR studies at 100 K of a similar reaction performed with addition of excess diMeH₄P, for 3 min at 180 K, led to signals at *g* = 2.33, 2.19 and 1.92. These *g*-values are highly similar to those previously reported for the $Fe^{III}(TMP)(imi-)$ dazole)(OOH) complex and for the hemoglobin–, P450cam– and heme oxygenase–Fe^{III}OOH complexes (Table 1); they are considered to be characteristic of hexacoordinated porphyrin FeIIIOOH complexes15 and are clearly different from the *g*-values observed for the corresponding $Fe^{III}OO^-$ complexes.¹⁵ Further warming of the solution from 180 K to 293 K led to the disappearance of these signals at temperature higher than 210 K. These data indicate that diMeH4P rapidly transfers an electron to the "picket-fence" porphyrin Fe^{II}O₂ complex with intermediate formation of di-MeH₄P⁺· and of a transient Fe^{III}OO⁻ species which should be rapidly protonated at 180 K in the acetone–H2O medium with

Table 1 Comparison of the EPR data of the intermediate complex formed upon reaction of $Fe(T_{piv}PP)(O_2)(NMelm)$ and diMeH₄P with those previously reported for hexacoordinated porphyrin FeIIIOOH complexes

Complex ^a	g-values			Ref.
$Fe(T_{\text{piv}}PP)(O_2)(NMelm) +$ diMePH ₄ at 180K	2.33	2.19	1.92	This work
Fe ^{III} (TMP)(Im)(OOH)	2.32	2.19	1.94	11
β-НЬ Fе ^{III} ООН	2.31	2.18	1.94	12
P450cam Fe ^{III} OOH	2.29	2.17	1.96	13
HOx Fe ^{III} OOH	2.37	2.19	1.92	14

a TMP, β-Hb, P450cam and HO*x* are used for *meso*-tetramesitylporphyrin, the β chain of hemoglobin, cytochrome P450 101 and heme oxygenase, respectively.

formation of the corresponding FeIIIOOH intermediate observed by EPR spectroscopy [eqn. (2)]. Such a protonation of the transient ("picket-fence" porphyrin) $Fe^{III}OO^-$ species at 180 K is in complete agreement with results reported on intermediate HbFe III OO⁻ generated by cryoreduction of HbFe II O₂ at 77 K, which leads to HbFe^{III}OOH upon warming at 180 K¹². Reaction of eqn. (2) mimics well the electron transfer from H_4B to heme $Fe^HO₂$ in NO-synthase (NOS), that is supposed to occur with transient formation of NOSFe^{III}OOH¹⁵ [eqn. (3)].

$$
(P)Fe^{II}O_{2} + diMeH_{4}P \xrightarrow{H^{+}} (P)Fe^{III}OOH + diMeH_{4}P^{+} \tag{2}
$$

$$
NOSFe^{II}O_{2} + H_{4}B \xrightarrow{H^{+}} [NOSFe^{III}OOH] + H_{4}B^{+}
$$
 (3)

Our data show that the transfer of an electron from tetrahydropterins to iron porphyrins, with intermediate formation of tetrahydropterin cation radicals, is a very general reaction. It was shown to occur not only with H4B, as described for the first time in the case of NO-synthase,³ but also with diMeH₄P or another important biological cofactor, H4F, and various iron porphyrins, either in their ferric state, or in the $Fe^{II}O₂$ state, as in the first model of the NO-synthase reaction of that type described in this paper. These data suggest that such reactions should be found in enzymes using both a tetrahydropterin and a metallic centre in their active site; in that regard, it has been recently proposed that some bacterial NO-synthase could be associated with H4F.16

Notes and references

- 1 R. L. Blakley and S. J. Benkovic, in *Folates and Pterins*, **vol. 1 & 2**, eds. R. L. Blakley and S. J. Benkovic, John Wiley & sons, New York, 1985.
- 2 S. Pfeiffer, B. Mayer and B. Hemmens, *Angew. Chem., Int. Ed.*, 1999, **38**, 1714.
- 3 (*a*) A. R. Hurshman, C. Krebs, D. E. Edmondson, B. H. Huynh and M. A. Marletta, *Biochemistry*, 1999, **38**, 15689; (*b*) C-C. Wei, Z. Wang, Q. Wang, A. L. Meade, C. Hemann, R. Hille and D. J. Stuehr, *J. Biol. Chem.*, 2001, **276**, 1244; (*c*) P. P. Schmidt, R. Lange, A. C. F. Gorren, E. R. Werner, B. Mayer and K. K. Andersson, *J. Biol. Inorg. Chem.*, 2001, **6**, 151; (*d*) M. Du, H.-C. Yeh, V. Berka, L.-H. Wang and A.-L. Tsai, *J. Biol. Chem.*, 2003, **278**, 6002.
- 4 M. W. Grinstaff, M. G. Hill, E. R. Birnbaum, W. P. Schaefer, J. A. Labinger and H. B. Gray, *Inorg. Chem.*, 1995, **34**, 4896.
- 5 J. Vasquez-Vivar, J. Whitsett, P. Martasek, N. Hogg and B. Kalyanaraman, *Free Radical Biol. Med.*, 2001, **31**, 975.
- 6 J. F. Bartoli, K. Le Barch, M. Palacio, P. Battioni and D. Mansuy, *Chem. Commun.*, 2001, 1718.
- 7 G. R. Buettner, *Free Radical Biol. Med*, 1987, **3**, 259–303.
- 8 S. L. Kohnen, A. A. Mouithys-Mickalad, G. P. Deby-Dupont, C. M. T. Deby, M. L. Lamy and A. F. Noels, *Free Radical Res.*, 2001, **35**, 709.
- 9 D. A. Stotter, R. D. Thomas and M. T. Wilson, *Bioinorg. Chem.*, 1977, **7**, 87.
- 10 J. P. Collman, R. R. Gagne, C. A. Read, T. R. Halbert, G. Lang and W. T. Robinson, *J. Am. Chem. Soc.*, 1975, **19**, 1427.
- 11 K. Tajima, S. Oka, T. Edo, S. Miyake, H. Mano, K. Mukai, H. Sakurai and K. Ishizu, *Chem. Commun.*, 1995, 1507.
- 12 R. Davydov, T. Yoshida, M. Ikeda-Saito and B. M. Hoffman, *J. Am. Chem. Soc.*, 1999, **121**, 10656.
- 13 R. Davydov, T. M. Makris, V. Kofman, D. E. Werst, S. G. Sligar and B. M. Hoffman, *J. Am. Chem. Soc.*, 2001, **123**, 1403.
- 14 R. Davydov, V. Kofman, H. Fujii, T. Yoshida, M. Ikeda-Saito and B. M. Hoffman, *J. Am. Chem. Soc.*, 2002, **124**, 1798.
- 15 R. Davydov, A. Ledbetter-Rogers, P. Martasek, M. Larukhin, M. Sono, J. D. Dawson, B. S. S. Masters and B. M. Hoffman, *Biochemistry*, 2002, **41**, 10375.
- 16 S. Adak, A. M. Bilwes, K. Panda, D. Hosfield, K. S. Aulak, J. F. McDonald, J. A. Tainer, E. D. Getzhoff, B. R. Crane and D. J. Stuehr, *Proc. Natl. Acad. Sci. USA*, 2002, **41**, 10375.